
WHITEPAPER

The Force.com Multitenant Architecture
Understanding the Design of Salesforce.com’s Internet Application
Development Platform

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform 1

WHITEPAPER

Contents

Abstract .. 2

Introduction .. 2

Multitenant Applications .. 2

Comparing Raw Cloud Computing and PaaS ... 3

Metadata-Driven Architectures .. 3

New Challenges and Emerging Solutions .. 4

Force.com Platform Architecture Overview .. 4

Force.com Data Definition and Storage .. 5
The Objects Metadata Table ..5
The Fields Metadata Table ...5
The Data Table ...5
The Clobs Table ...6
The Indexes Pivot Table ...6
The UniqueFields Pivot Table ..7
The Relationships Pivot Table ...7
The FallbackIndex Table ..7
The NameDenorm Table ...7
History Tracking Table ..7
Partitioning of Data and Metadata ..8

Application Development, Logic, and Processing .. 8
The Application Framework ..8
Metadata and Web Services APIs ...9
Bulk Processing with API Calls ..9
Deletes, Undeletes, and The Recycle Bin ...10
Data Definition Processing ..10

Internal Query Optimizations ...11

Force.com Full-Text Search Engine ..11

Apex ..12

Historical Statistics ..13

Conclusions ...14

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform2

Abstract
Force.com is the preeminent on-demand application development platform in use today,
supporting some 47,000+ organizations. Individual enterprises and commercial software-as-a-
service (SaaS) vendors trust the platform to deliver robust, reliable, Internet-scale applications.
To meet the extreme demands of its large user population, Force.com’s foundation is a metadata-
driven software architecture that enables multitenant applications. This paper explains the patented
technology that makes the Force.com platform fast, scalable, and secure for any type of application.

Introduction
History has shown that every so often,
incremental advances in technology and
changes in business models create major
paradigm shifts in the way software
applications are designed, built, and delivered to
end users. The invention of personal computers
(PCs), computer networking and graphical
user interfaces (UIs) gave rise to the adoption
of client/server applications over expensive,
inflexible, character-mode mainframe
applications. And today, reliable broadband
Internet access, service-oriented architectures
(SOAs), and the cost inefficiencies of managing
dedicated on-premises applications are
driving a transition toward the delivery of
decomposable, managed, shared, Web-based
services called software as a service (SaaS).
With every paradigm shift comes a new set of
technical challenges, and SaaS is no different.
Yet existing application frameworks are not
designed to address the special needs of
SaaS. This void has given rise to another new
paradigm shift, namely platform as a service
(PaaS). Hosted application platforms are
managed environments specifically designed to
meet the unique challenges of building SaaS
applications and deliver them more cost-
efficiently than ever before.
The focus of this paper is multitenancy,
a fundamental design approach that can
dramatically help improve the manageability
of SaaS applications. This paper defines
multitenancy, explains the benefits of
multitenancy, and demonstrates why metadata-
driven architectures are the premier choice for
implementing multitenancy. After these general
introductions, the bulk of this paper explains
the technical design of Force.com, the world’s
first PaaS, which delivers turnkey multitenancy
for Internet-scale applications. The paper details
Force.com’s patented metadata-driven architecture
components to provide an understanding of
the features used to deliver reliable, secure, and
scalable multitenant applications.

Multitenant Applications
To decrease the cost of delivering the same
application to many different sets of users,

an increasing number of applications are
multitenant rather than single-tenant. Whereas
a traditional single-tenant application requires
a dedicated set of resources to fulfill the
needs of just one organization, a multitenant
application can satisfy the needs of multiple
tenants (companies or departments within a
company, etc.) using the hardware resources and
staff needed to manage just a single software
instance (Figure 1).

Figure 1: A multitenant application cost-efficiently shares
a single stack of resources to satisfy the needs of multiple
organizations.

Tenants using a multitenant service operate
in virtual isolation from one another:
Organizations can use and customize an
application as though they each have a separate
instance, yet their data and customizations
remain secure and insulated from the activity of
all other tenants. The single application instance
effectively morphs at runtime for any particular
tenant at any given time.
Multitenancy is an architectural approach that
pays dividends to both application providers
and users. Operating just one application
instance for multiple organizations yields
tremendous economy of scale for the provider.
Only one set of hardware resources is necessary
to meet the needs of all users, a relatively
small, experienced administrative staff can
efficiently manage only one stack of software
and hardware, and developers can build and
support a single code base on just one platform
(operating system, database, etc.) rather than
many. The economics afforded by multitenancy
allow the application provider to, in turn,

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform 3

offer the service at a lower cost to customers.
Everyone involved wins.
Some interesting side benefits of multitenancy
are improved quality, user satisfaction, and
customer retention. Unlike single-tenant
applications, which are isolated silos deployed
outside the reach of the application provider, a
multitenant application is one large community
that is hosted by the provider itself. This design
shift lets the provider gather operational
information from the collective user population
(which queries respond slowly, what errors
happen, etc.) and make frequent, incremental
improvements to the service that benefit the
entire user community at once.
Two additional benefits of a multitenant
platform-based approach are collaboration
and integration. Because all users run all
applications in one space, it is easy to allow any
user of any application varied access to specific
sets of data. This capability greatly simplifies the
effort necessary to integrate related applications
and the data they manage.

Comparing Raw Cloud Computing and
PaaS
Raw computing clouds are machine-centric
services that provide on-demand infrastructure
as a service (IaaS) for the deployment of
applications. Such clouds provide little more
than the computing power and storage capacity
needed to execute virtual servers that comprise
an application. Some SaaS vendors looking
for a quick go-to-market strategy avoid the
challenges of developing a true multitenant
solution and choose to deliver single-tenant
instances via IaaS.
Platform as a service (PaaS) such as Force.com
is an application-centric approach that
abstracts the concept of servers altogether.
PaaS lets developers focus on core application
development from day one and to deploy
an application with the push of a button.
The provider never needs to worry about
multitenancy, high availability, load balancing,
scalability, system backups, operating system
patches and security, and other similar
infrastructure-related concerns—all these
services are delivered as the “S” in PaaS.

Metadata-Driven Architectures
Multitenancy is practical only when it
can support applications that are reliable,
customizable, upgradeable, secure, and fast.
But how can a multitenant application allow
each tenant to create custom extensions to

standard data objects and entirely new custom
data objects? How will tenant-specific data be
kept secure in a shared database so one tenant
can’t see another tenant’s data? How can one
tenant customize the application’s interface and
business logic in real time without affecting the
functionality or availability of the application for
all other tenants? How can the application’s code
base be patched or upgraded without breaking
tenant-specific customizations? And how will
the application’s response time scale as tens of
thousands of tenants subscribe to the service?
It’s difficult to create a statically compiled
application executable that can meet these
and other unique challenges of multitenancy.
Inherently, a multitenant application must be
dynamic in nature, or polymorphic, to fulfill the
individual expectations of various tenants and
their users.
For these reasons, multitenant application
designs have evolved to use a runtime engine
that generates application components from
metadata—data about the application itself. In
a well-defined metadata-driven architecture
(Figure 2), there is a clear separation of the
compiled runtime engine (kernel), application
data, the metadata that describes the base
functionality of an application, and the
metadata that corresponds to each tenant’s data
and customizations. These distinct boundaries
make it possible to independently update the
system kernel, modify the core application, or
customize tenant-specific components, with
virtually no risk of one affecting the others.

Figure 2: A metadata-driven application had clear separation
between the runtime engine, data, common application
metadata, and tenant-specific metadata.

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform4

New Challenges and Emerging Solutions
Attempting to weave multitenancy throughout
the fabric of an application’s core logic and
its underlying infrastructure is a complex
undertaking. Building metadata-driven,
multitenant applications from scratch without
any prior experience is destined to be a time-
consuming and error-prone effort. In the end,
many would-be SaaS providers struggle to
succeed in building multitenant applications
and end up wasting valuable time that could
have been spent focused on the innovation of
core application functionality and features.
One problem is that traditional application
development frameworks and platforms are not
equipped to handle the special needs of modern
Internet applications. As a result, new types
of platforms are emerging to help simplify the
development and deployment of multitenant
applications.
Force.com is the first and most mature general-
purpose, multitenant, Internet application
development platform available today. The
remaining sections of this paper explain specific
details about the technical design of Force.com
so you can better understand its capabilities.

Force.com Platform Architecture Overview
Force.com’s optimized metadata-driven
architecture delivers extraordinary performance,
scalability, and customization for on-demand,
multitenant applications (Figure 3).

Figure 3: Force.com’s metadata-driven architecture optimally
generates virtual application components at runtime.

In Force.com, everything exposed to developers
and application users is internally represented

as metadata. Forms, reports, work flows, user
access privileges, tenant-specific customizations
and business logic, even the definitions of
underlying data tables and indexes, are all
abstract constructs that exist merely as metadata
in Force.com’s Universal Data Dictionary
(UDD). For example, when a developer is
building a new custom application and defines
a custom table, lays out a form, or writes some
procedural code, Force.com does not create an
“actual” table in a database or compile any code.
Instead,Force.com simply stores metadata that
the platform’s engine can use to generate the
“virtual” application components at runtime.
When someone wants to modify or customize
something about the application, all that’s
required is a simple non-blocking update to the
corresponding metadata.
Because metadata is a key ingredient of
Force.com applications, the platform’s runtime
engine must optimize access to metadata;
otherwise, frequent metadata access would
prevent the platform from scaling. With this
potential bottleneck in mind, Force.com uses
metadata caches to maintain the most recently
used metadata in memory, avoid performance
sapping disk I/O and code recompilations, and
improve application response times.
Force.com stores the application data for all
virtual tables in a few large database tables that
serve as heap storage. The platform’s engine
then materializes virtual table data at runtime
by considering corresponding metadata.
To optimize access to data in the system’s
large tables, Force.com’s engine relies on a
set of specialized pivot tables that maintain
denormalized data for various purposes such as
indexing, uniqueness, relationships, etc.
Force.com’s data processing engine helps
streamline the overhead of large data loads and
online transaction processing applications by
transparently performing data modification
operations in bulk. The engine has built-in fault
recovery mechanisms that automatically retry
bulk save operations after factoring out records
that cause errors.
To further hone application response times,
the platform employs an external search service
that optimizes full-text indexing and searches.
As applications update data, the search service’s
background processes asynchronously update
tenant- and user-specific indexes in near real
time. This separation of duties between the
application engine and the search service
lets platform applications efficiently process
transactions without the overhead of text index

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform 5

updates, and at the same time quickly provide
users with accurate search results.
As Force.com’s runtime application generator
dynamically builds applications in response to
specific user requests, the engine relies heavily
on its “multitenant-aware” query optimizer
to execute internal operations as efficiently as
possible. The query optimizer considers which
user is executing a given application function,
and then, using related tenant-specific metadata
maintained in the UDD along with internal
system pivot tables, builds and executes data
access operations as optimized database queries.
Now that you have a general idea of the key
architecture components that make up the
underlying mechanisms of Force.com, the
following sections explain the structure and
purpose of various internal system elements in
more detail.

Force.com Data Definition and Storage
Rather than attempting to manage a vast, ever-
changing set of actual database structures on
behalf of each application and tenant, the
Force.com storage model manages “virtual”
database structures using a set of metadata, data,
and pivot tables, as illustrated in Figure 4.

Figure 4: Force.com’s data definition and storage model consists
of a set of metadata, data, and pivot tables that allow for
functional access to the actual data of “virtual” tables.

When organizations create custom application
objects (i.e., custom tables), the UDD keeps
track of metadata concerning the objects, their
fields, relationships, and other object definition
characteristics. Meanwhile, a few large database
tables store the structured and unstructured
data for all virtual tables, and a set of related,

specialized pivot tables maintain denormalized
data that makes the combined data set
extremely functional.
Figure 5 is a simplified entity-relationship (ER)
diagram of three core Force.com metadata and
data structures that enable this approach: the
Objects, Fields, and Data tables.
Note: For brevity and clarity, the actual names
of Force.com system tables and columns are not
necessarily cited in this paper.

The Objects Metadata Table
The Objects metadata table stores information
about the custom objects (a.k.a. tables or
entities) that an organization defines for an
application, including a unique identifier for
an object (ObjID), the organization (OrgID)
that owns the object, and the name given to the
object (ObjName).

The Fields Metadata Table
The Fields metadata table stores information
about the custom fields (a.k.a. columns or
attributes) that an organization defines for
custom objects, including a unique identifier
for a field (FieldID), the organization (OrgID)
that owns the encompassing object, the object
that contains the field (ObjID), the name of
the field (FieldName), the field’s datatype, a
Boolean value to indicate if the field requires
indexing (IsIndexed), and the position of
the field in the object relative to other fields
(FieldNum).

Figure 5: Force.com uses metadata in the Objects and Fields
tables to define application object and fields and to map
corresponding data stored in the large Data database table.

The Data Table
The Data table stores the application-accessible
data that maps to all custom objects and their
fields, as defined by metadata in Objects and
Fields. Each row includes identifying fields
such as a global unique identifier (GUID),
the organization that owns the row (OrgID),
and the encompassing object identifier
(ObjID). Each row in the Data table also has
a Name field that stores a “natural name” for
corresponding object instances; for example,
an Account object might use “Account Name,”
a Case object might use “Case Number,” and

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform6

so on. The Value0 ... Value500 columns store
application data that maps to the objects and
fields declared in the Objects and Fields tables,
respectively; all “flex” columns use a variable-
length string datatype so that they can store
any structured type of application data (strings,
numbers, dates, etc.).
Custom fields can use any one of a number
of standard structured datatypes such as text,
number, date, and date/time as well as special
use structured datatypes such as picklist
(enumerated field), autonumber (auto-
incremented, system-generated sequence
number), formula (read-only derived value),
master-detail relationship (foreign key),
checkbox (Boolean), email, URL, and others.
Custom fields can also be required (not null)
and have custom validation rules (for example,
one field must be greater than another field),
both of which are enforced by the platform’s
application server.
When an organization declares or modifies a
custom application object, Force.com manages
a row of metadata in the Objects table that
defines the object. Likewise, for each custom
field, Force.com manages a row in the Fields
table, including metadata that maps the field
to a specific flex column in the Data table for
the storage of corresponding field data. Because
Force.com manages object and field definitions
as metadata rather than actual database
structures, the platform can tolerate multitenant
application schema maintenance activities
without blocking the concurrent activity of
other tenants and users.
No two fields of the same object can map to
the same flex column (slot) in the Data table
for storage; however, a single flex column can
manage the information of multiple fields, as
long as each field stems from a different object.

Figure 6: A single flex column can store various types of data
that originate from attributes of different objects.

As the simplified representation of the Data
table in Figure 6 shows, flex columns are of a
universal datatype (variable-length string), which
permits Force.com to share a single flex column
among multiple fields that use various structured
datatypes (strings, numbers, dates, etc.).

Force.com stores all flex column data using a
canonical format and uses underlying database
system datatype-conversion functions (e.g.,
TO_NUMBER, TO_DATE, TO_CHAR), as
necessary, when applications read data from and
write data to flex columns.
Although not shown in Figure 5, the Data
table also contains other columns. For example,
there are four columns to manage auditing
data, including when and which user created an
object instance (row), and when and which user
last modified an object instance. The Data table
also contains an IsDeleted column that Force.
com uses to indicate when an object instance
has been deleted.

The Clobs Table
Force.com supports the declaration of fields
as character large objects (CLOBs) to permit
the storage of long text fields up to 32,000
characters. For each row in the Data table that
has a CLOB, Force.com stores the CLOB out-
of-line in a pivot table called Clobs, which the
system can join with corresponding rows in the
Data table as necessary.
Note: Force.com also stores CLOBs in indexed
form outside the database for fast text searches.
See Section 9 for more information about
Force.com’s text search engine.

The Indexes Pivot Table
Traditional database systems rely on indexes to
quickly locate specific rows in a database table
that have fields matching a specific condition.
However, it is not practical to create native
database indexes for the flex columns of the
Data table because Force.com is likely using
a single flex column to store the data of many
fields that have varying structured datatypes.
Instead, Force.com manages an index of the
Data table by synchronously copying field data
marked for indexing to an appropriate column
in a pivot table called Indexes, as depicted in a
simplified ER diagram (Figure 7).
The Indexes table contains strongly typed,
indexed columns such as StringValue,
NumValue, and DateValue that Force.com
uses to locate field data of the corresponding
datatype. For example, Force.com would copy a
string value in a Data table flex column to the
StringValue field in Indexes, a date value to the
DateValue field, etc. The underlying indexes
of the Indexes table are standard non-unique
database indexes. When an internal system query
includes a search parameter that references a
structured field in a custom object, the platform’s

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform 7

query optimizer uses the Indexes table to help
optimize associated data access operations.

Figure 7: Force.com uses a pivot table to index data stored in
flex columns.

Note: Force.com can handle searches across
multiple languages because the platform’s
application servers use a case-folding algorithm
that converts string values to a universal, case-
insensitive format. The StringValue column
of the Indexes table stores string values in
this format. At runtime, the query optimizer
automatically builds data access operations so
that the optimized SQL statement filters on
the corresponding case-folded StringValue
that corresponds to the literal provided in the
search request.

The UniqueFields Pivot Table
Force.com lets an organization indicate when
a field in an object must contain unique values
(case-sensitive or case-insensitive). Considering
the arrangement of the Data table and shared
usage of the Value columns for custom field
data, it is not practical to create unique database
indexes for the table (similar to the problem
discussed in the previous section for non-
unique indexes).
To support uniqueness for custom fields,
 Force.com uses the pivot table called
UniqueFields; this table is very similar
to the Indexes pivot table except that the
UniqueFields table’s underlying database
indexes enforce uniqueness. When an
application attempts to insert a duplicate value
into a field that requires uniqueness, or an
administrator attempts to enforce uniqueness
on an existing field that contains duplicate
values, Force.com relays an appropriate error
message to the application.

The Relationships Pivot Table
Force.com provides “relationship” datatypes
that an organization can use to declare
relationships (referential integrity) among
application objects. When an organization
declares an object’s field with a relationship
type, the platform maps the field to a Value
field in the Data table, and then uses this field
to store the ObjID of a related object.

To optimize join operations, Force.com
maintains a pivot table called Relationships, as
depicted in Figure 8.

Figure 8: The Relationship table helps optimize object joins.

The Relationships index table has two
underlying database unique composite indexes
(OrgID+GUID, and OrgID+ObjID+RelationI
D+TargetObjID) that allow for efficient object
traversals in either direction, as necessary.

The FallbackIndex Table
In rare circumstances, the platform’s external
search engine can become overloaded or
otherwise unavailable, and may not be able to
respond to a search request in a timely manner.
Rather than returning a disappointing error to
a user that has requested a search, the platform’s
application server falls back to a secondary search
mechanism to furnish reasonable search results.
A fall-back search is implemented as a direct
database query with search conditions that
reference the Name field of target application
objects. To optimize global object searches
(searches that span objects) without having to
execute potentially expensive union queries,
Force.com maintains a pivot table called
FallbackIndex that records the Name of all
objects. Updates to FallbackIndex happen
synchronously, as transactions modify objects,
so that fall-back searches always have access to
the most current database information.

The NameDenorm Table
The NameDenorm table is a lean data table
that stores the ObjID and Name of each object
instance that is in the Data table. When an
application needs to provide a list of hyperlinks
to object instances involved in a parent/child
relationship, Force.com uses the NameDenorm
table to execute a relatively simple query that
retrieves the Name of each referenced object
instance for display as part of a hyperlink.

History Tracking Table
Force.com easily provides turnkey history tracking
for any field. When an organization enables auditing
for a specific field, the system asynchronously
records information about the changes made to the
field (old and new values, change date, etc.) using an
internal pivot table as an audit trail.

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform8

Partitioning of Data and Metadata
All Force.com data, metadata, and pivot table
structures, including underlying database
indexes, are physically partitioned by OrgID
(by tenant) using native database partitioning
mechanisms. Data partitioning is a proven
technique that database systems provide to
physically divide large logical data structures
into smaller, more manageable pieces.
Partitioning can also help to improve the
performance, scalability, and availability of a
large database system such as a multitenant
environment. For example, by definition, every
Force.com application query targets a specific
tenant’s information, so the query optimizer
need only consider accessing data partitions
that contain a tenant’s data rather than an entire
table or index—this common optimization is
sometimes referred to as “partition pruning.”

Application Development, Logic, and
Processing
Force.com supports two different ways
to create custom applications and their
individual components: declaratively, using
the native platform application framework,
and programmatically, using application
programming interfaces (APIs). The following
sections explain more about each approach and
related application development topics.

The Application Framework
Developers can declaratively build custom
Force.com applications using the “native”
Force.com application framework. The platform’s
native point-and-click interface supports all facets
of the application development process, including
the creation of an application’s data model
(custom objects and their fields, relationships, etc.),
security and sharing model (users, organization
hierarchies, profiles, etc.), user interface (screen
layouts, data entry forms, reports, etc.), as well as
logic and work flow.
Force.com application framework user
interfaces are easy to build because there’s
no coding involved. Behind the scenes, they
support all the usual data access operations,
including queries, inserts, updates, and deletes.
Each data manipulation operation performed
by native platform applications can modify one
object at a time, and automatically commit each
change in a separate transaction.
Force.com’s native integrated development
environment (IDE) provides easy access to
many built-in platform features that make
it easy to implement common application

functionality without writing complicated
and error-prone code. Such features include
declarative workflows, encrypted/masked fields,
validation rules, formula fields, roll-up summary
fields, and cross-object validation rules.
A workflow is a predefined action triggered
by the insert or update of an object instance
(row). A workflow can trigger a task, email
alert, update a data field, or send a message.
Workflow rules specify the criteria that
determine when to trigger a workflow action.
A workflow can be set to fire immediately or
set to operate at a subsequent interval after
the triggering event. For example, a developer
might declare a workflow that, immediately
after a record is updated, automatically updates
the row’s Status field to “Modified” and then
sends a template email alert to a supervisor. All
workflow operations occur within the context
of the transaction that triggers the workflow. If the
system rolls back a transaction, all related workflow
operations that were executed also roll back.
When defining a text field for an object that
contains sensitive data, developers can easily
configure the field so that Force.com encrypts
the corresponding data and optionally uses
an input mask to hide screen information
from prying eyes. Force.com encrypts fields
using AES (Advanced Encryption Standard)
algorithm 128-bit keys.
A declarative validation rule is a simple way for
an organization to enforce a domain integrity
rule without any programming. For example,
the first screen capture in Figure 9 illustrates
how easy it is to use the Force.com IDE to
declare a validation rule that makes sure that
a LineItem object’s Quantity field is always
greater than zero.
A formula field is a declarative feature of the
Force.com application framework that makes
it easy to add a calculated field to an object. For
example, the second screen capture in Figure
9 also shows how a developer can use a simple
IDE form to add a field to the LineItem object
to calculate a LineTotal value.
A roll-up summary field is a cross-object field
that makes it easy to aggregate child field
information in a parent object. For example, the
final screen capture in Figure 9 shows how to
use the IDE to create an OrderTotal summary
field in the SalesOrder object based on the
LineTotal field of the LineItem object.
Note: Internally, Force.com implements
formula and roll-up summary fields using

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform 9

native database features and efficiently
recalculates values synchronously as part of
ongoing transactions.

Metadata and Web Services APIs
Force.com also provides programmatic APIs
for building applications. These APIs are
compatible with SOAP-based development
environments, including Visual Studio .NET
(C#) and Apache Axis (Java and C++).
Applications can leverage Force.com APIs
to integrate with other environments. For
example, applications can leverage APIs to
access data in other systems, build mashups that
combine information originating from multiple
data sources, include external systems as part
of an application process, or build fat clients to
interact with the Force.com Platform database
management system.

Figure 9: Declaring validation rules, formula fields, and
rollup summary fields are simple configuration steps rather
than complex coding tasks.

The Force.com Metadata API is useful for
managing application components—to create
and modify the metadata that corresponds to
custom object definitions, page layouts, work
flows, etc. To create, retrieve, update, or delete
object instances (rows of data), applications can
use the Force.com Web Services API.

To access the Force.com Web service,
developers first download a Web Service
Description Language (WSDL) file.
The development platform then uses the
WSDL file to generate an API to access the
organization’s corresponding Force.com Web
service (data model).
There are two types of Force.com WSDL files.
An Enterprise WSDL file is for developers who
are building organization-specific applications.
An Enterprise WSDL file is a strongly typed
representation of an organization’s data
model. It provides information about the
organization’s schema, data types, and fields to
the development environment, allowing for a
tighter integration between it and the Force.com
Web service. An Enterprise WSDL changes
if custom fields or custom objects are added to,
renamed, or removed from an organization’s
application schema. In contrast, a Partner
WSDL file is for salesforce.com partners that
are developing client applications for multiple
organizations. As a loosely typed representation
of the Force.com object model, a Partner
WSDL provides an API that is useful for
accessing data within any organization.

Bulk Processing with API Calls
Transaction-intensive applications generate
less overhead and perform much better when
they combine and execute repetitive operations
in bulk. For example, contrast two ways an
application might load many new instances of
an object. An inefficient approach would be to
use a routine with loop that inserts individual
object instances, making one API call for
each insert operation. A much more efficient
approach would be to create an array of object
instances and have the routine insert all of them
with a single API call.
Applicable Force.com Web Services API calls
such as create(), update(), and delete() support
bulk operations. For maximum efficiency, the
platform implicitly bulk processes all internal
steps related to an explicit bulk operation, as
illustrated in Figure 10.

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform10

Figure 10: Force.com’s bullk processing engine executes each
internal step related to a bulk operation as a bulk operation
itself and automatically does a best effort to continue past
rows that cause exceptions.

Figure 10 also illustrates the unique
mechanisms of Force.com’s bulk processing
engine that can account for isolated faults
encountered during any step along the way.
When a bulk operation starts in partial save
mode, the engine identifies a known start state
and then attempts to execute each step in the
process (bulk validate field data, bulk fire pre-
triggers, bulk save records, etc.). If the engine
detects errors during any step, the engine rolls
back offending operations and all side effects,
removes the rows that are responsible for the
faults, and continues, attempting to bulk process
the remaining subset of rows. This process
iterates through each stage of the process until
the engine can commit a subset of rows without
any errors. The application can examine a return
object to identify which rows failed and what
exceptions they raised.
Note: At the discretion of the application, an
all-or-nothing mode is also available for bulk
operations. Also, the execution of triggers
during a bulk operation is subject to internal
governors that restrict the amount of work.

Deletes, Undeletes, and The Recycle Bin
When someone deletes an individual object
instance (record) from a custom object,
Force.com simply marks the object instance
for deletion by modifying the object instance’s
IsDeleted field (in the Data table). This
effectively places the object in what is known

as the platform’s Recycle Bin. Force.com
lets users view and restore selected object
instances from the Recycle Bin for up to 30
days before permanently removing them from
the internal Data table. The platform limits
the total number of records it maintains for an
organization based on the total number of user
licenses for the organization.
When someone deletes a parent record involved
in a master-detail relationship, Force.com
automatically deletes all related child records,
provided that doing so would not break any
referential integrity rules in place. For example,
when a user deletes a SalesOrder, Force.com
automatically cascades the delete to dependent
LineItems. Should someone subsequently
restore a parent record from the Recycle Bin,
the platform automatically restores all child
object instances as well.
In contrast, when someone deletes a referenced
parent record involved in a lookup relationship,
Force.com automatically sets all dependent keys
to null. If someone subsequently restores the
parent record, Force.com automatically restores
the previously nulled lookup relationships
except for the relationships that were reassigned
between the delete and restore operations.
The Recycle Bin also stores dropped fields and
their data until an organization permanently
deletes them or 45 days has elapsed, whichever
happens first. Until that time, the entire field
and all its data is available for restoration.

Data Definition Processing
Certain types of modifications to the definition
of an object require more than simple UDD
metadata updates. In such cases, Force.com
uses efficient mechanisms that help reduce the
overall performance impact on the platform’s
multitenant applications.
For example, consider what happens behind
the scenes when someone modifies a column’s
datatype from picklist to text. Force.com first
allocates a new slot for the column’s data, bulk
copies the picklist labels associated with current
values, and then updates the column’s metadata
so that it points to the new slot. While all
of this happens, access to data is normal and
applications continue to function without any
noticeable impact.
As another example, consider what happens
when someone adds a roll-up summary
field to a table. In this case, the Force.com
asynchronously calculates initial summaries

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform 11

in the background using an efficient bulk
operation. While the background calculation is
happening, users that view the new field receive
an indication that the Force.com Platform is
currently calculating the field’s value.

Internal Query Optimizations
Most modern database systems determine
optimal query execution plans by employing
a cost-based query optimizer that considers
relevant statistics about target table and index
data. However, conventional cost-based
optimizer statistics are designed for single-tenant
applications and fail to account for the data access
characteristics of any given user executing a query
in a multitenant environment. For example, a
given query that targets an object (table) with a
large volume of data would most likely execute
more efficiently using different execution plans
for users with high visibility (a manager that can
see all object instances) versus users with low
visibility (sales people that can only see rows
related to themselves).
To provide sufficient statistics for determining
optimal query execution plans in a multitenant
platform, Force.com maintains a complete set
of optimizer statistics (tenant-, group-, and
user-level) for each virtual multitenant object.
Statistics reflect the number of rows that a
particular query can potentially access, carefully
considering overall tenant-specific object statistics
(total number of rows owned by the tenant as a
whole, etc.) as well as more granular statistics (the
number of rows that a specific privilege group or
end user can potentially access, etc.).
Force.com also maintains other types of statistics
that prove helpful with particular queries. For
example, the platform maintains statistics for all
custom indexes to reveal the total number of non-
null and unique values in the corresponding field,
and histograms for picklist fields that reveal the
cardinality of each list value.
When existing statistics are not in place or are
not considered helpful, Force.com’s optimizer
has a few different strategies it uses to help build
reasonably optimal queries. For example, when a
query filters on the Name field of an object, the
optimizer can use the FallbackIndex pivot table
to efficiently find requested object instances. In
other scenarios, the optimizer will dynamically
generate missing statistics at runtime.
Used in tandem with optimizer statistics,
Force.com’s optimizer also relies on internal
security related tables (Groups, Members,

GroupBlowout, and CustomShare) that
maintain information about the security
domains of platform users, including a given
user’s group memberships and custom access
rights for objects.

Figure 11: When a request for data happens, Force.com
executes pre-queries, the results of which the platform’s
multitenant-aware query optimizer uses to build and
execute optimal database queries.

The flow diagram in Figure 11 illustrates what
happens when Force.com intercepts a request
for data that is in one of the large heap tables
such as Data. The request might originate from
any number of sources, such as a page request
from an Application Framework application, a
Web services API call, or an Apex script. First,
the platform executes “pre-queries” that
consider the multitenant-aware statistics. Then,
considering the results returned by the pre-
queries, the platform builds an optimal database
query for execution in the specific setting.

Pre-Query
Selectivity

Measurements Write final database access query, forcing ...

User Filter

Low Low ... nested loops join; drive using view of rows
that the user can see.

Low High ... use of index related to filter.

High Low ... ordered hash join; drive using Data table.

High High ... use of index related to filter.

As Table 1 shows, Force.com can execute the
same query four different ways, depending on
who submits the query and the selectivity of the
query’s filter conditions.

Force.com Full-Text Search Engine
Web-based application users have come to
expect an interactive search capability to scan

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform12

the entire or a selected scope of an application’s
data, return ranked results that are up to date,
and do all this with sub-second response
times. To provide such robust functionality
for platform applications, Force.com uses an
architecture based on an external search engine,
as depicted in Figure 12.
As applications update data in text fields
(CLOBs, Name, etc.), a pool of platform
background processes called indexing servers
are responsible for asynchronously updating
corresponding indexes, which the search
engine maintains outside the core database.
To optimize the indexing process, Force.com
synchronously copies modified chunks of text
data to an internal “to-be-indexed” table as
transactions commit, thus providing a relatively
small data source that minimizes the amount
of data that indexing servers must read from
disk. The search engine automatically maintains
separate indexes for each organization (tenant).
Depending on the current load and utilization
of indexing servers, text index updates may
noticeably lag behind actual transactions. To
avoid unexpected search results originating
from stale indexes, Force.com also maintains
an MRU cache of recently updated objects
that the platform’s application servers consider
when materializing full-text search results. The
platform maintains MRU caches on a per-user
and per-organization basis to efficiently support
possible search scopes.

Figure 12: Force.com uses an external search engine to
provide fast text searches for multitenant applications.

Force.com optimizes the ranking of records
within search results using several different
methods. For example, the system considers the
security domain of the user performing a search
and weighs heavier those objects to which the
current user has access. The system can also
consider the modification history of a particular
object, and rank more actively updated objects
ahead of those that are relatively static. The user

can choose to weight search results as desired,
for example, placing more emphasis on recently
modified objects.

Apex
Apex is a strongly typed, object-oriented
procedural programming language that
developers can use to declare program variables
and constants and execute traditional flow
control statements (if-else, loops, etc.), data
manipulation operations (insert, update, upsert,
delete), and transaction control operations
(setSavepoint, rollback) on behalf of Force.com
applications. Apex is similar in many respects to
Java. Developers can build Apex routines that
add custom business logic to most application
events, including button clicks, updates to data,
Web service requests, custom batch services,
and others.
Developers can build Apex programs in two
different forms: as an anonymous standalone
script that is executed on demand, or as a
trigger that automatically executes before or
after a specific database manipulation event
occurs (insert, update, delete, or undelete). In
either form, Force.com compiles Apex code
and stores it as metadata in the UDD. When
an Apex routine is called for the first time
by someone in an organization, Force.com’s
runtime interpreter loads the compiled version
of the program into an MRU cache for that
organization. Thereafter, when any user from
the same organization requires use of the same
routine, Force.com can save memory and avoid
the overhead of recompiling the program again
by sharing the ready-to-run program that is
already in memory.
Apex is much more than “just another procedural
language.” Apex is an integral Force.com
component that helps the platform deliver
reliable multitenant applications. For example,
Force.com automatically validates all embedded
Sforce Object Query Language (SOQL)
and Sforce Object Search Language (SOSL)
statements within an Apex class to prevent
code that would otherwise fail at runtime. The
platform then maintains corresponding object
dependency information for valid Apex classes
and uses this information to prevent changes
to metadata that would otherwise break
dependent applications.
Many Apex standard classes and system
static methods provide simple interfaces to
underlying platform features. For example, the
system static DML methods such as insert,

WHITEPAPER

The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Development Platform 13

update, and delete have a simple Boolean
parameter that developers can use to indicate
the desired bulk processing option (all or
nothing, or partial save); these methods also
return a result object that the calling routine
can read to determine which records were
unsuccessfully processed and why. Other examples
of the direct ties between Apex and Force.com
platform features include the built-in Apex email
classes, HTTP (RESTful) services classes, and
XmlStream classes, just to name a few.
To prevent malicious or unintentional
monopolization of shared, multitenant platform
resources, Force.com has an extensive set of
governors and resource limits associated with
Apex code execution. For example, Force.com
closely monitors the execution of an Apex script
and limits how much CPU time it can use, how
much memory it can consume, how many queries
and DML statements it can execute, how many
math calculations it can perform, how many
outbound Web service calls it can make, and
much more. Individual queries that the platform’s
optimizer regards as too expensive to execute
throw a runtime exception to the caller. Although
such limits might sound somewhat restrictive,
they are necessary to protect the overall scalability
and performance of the shared platform for
all concerned applications. In the long term,
these measures help to promote better coding
techniques among platform developers and create
a better experience for everyone. For example, a
developer that initially tries to code a loop that
inefficiently updates a thousand rows one row
at a time will receive runtime exceptions due to
resource limits and then begin using Force.com’s
efficient bulk processing API calls.
To further avoid potential platform problems
introduced by poorly written applications, the
deployment of a new production application
is a process that is strictly managed. Before
an organization can transition a new custom
application from development to production
status, salesforce.com requires unit tests that
validate the functionality of the application’s Apex
routines. Submitted unit tests must cover no less
than 75 percent of the application’s source code.
Salesforce.com executes submitted unit tests in the
Force.com Sandbox environment to ascertain if the
application will adversely affect the performance
and scalability of the multitenant population at
large. The results of an individual unit test indicate
basic information such as the total number of lines
executed as well as specific information about the
code that was not executed by the test.

Once an application is certified for production
by salesforce.com, the deployment process for
the application consists of a single transaction
that copies all the application’s metadata into
a production Force.com instance and reruns
the corresponding unit tests. If any part of
the process fails, Force.com simply rolls back
the transaction and returns exceptions to help
troubleshoot the problem.
Note: Salesforce.com reruns the unit tests for
every application with each development release
of the platform to pro-actively learn whether new
platform features and enhancements break any
existing applications.
After a production application is live, Force.com’s
built-in performance profiler automatically
analyzes and provides associated feedback to
administrators. Performance analysis reports
include information about slow queries, data
manipulations, and sub-routines that developers
can review and use to tune application
functionality. The platform also logs and returns
information about runtime exceptions to
administrators to help debug their applications.

Historical Statistics
Years of experience have transformed Force.com
into an extremely fast, scalable, and reliable
multitenant Internet application platform. As
an illustration of Force.com’s proven capability
to support Internet-scale applications, consider
Figure 13. Specifically notice that, over time,
average page response time has decreased or
held steady (a measure of performance) while
average transaction volume has concurrently
increased (a measure of scalability).

Figure 13: Platform performance and scalability have
consistently improved each year as Force.com matures
and evolves.

For more platform data such as planned
maintenance, historical information on
transaction volume and speed, etc., visit trust.
salesforce.com, the Force.com community’s
home for real-time information about system
performance and security.

Copyright ©2008, salesforce.com, inc. All rights reserved. Salesforce.com and the “no software” logo are registered trademarks of salesforce.com, inc.,
and salesforce.com owns other registered and unregistered trademarks. Other names used herein may be trademarks of their respective owners.

Corporate Headquarters
The Landmark @ One Market
Suite 300
San Francisco, CA, 94105
United States

1-800-NO-SOFTWARE
www.salesforce.com

Latin America
+1-415-536-4606

Japan
+81-3-5785-8201

Asia/Paci�c
+65-6302-5700

Europe, Middle East & Africa
+4121-6953700

For More Information
Contact your account executive to learn
how we can help you accelerate your
SaaS success.

WP_Force-MT_101508

Conclusions
Platform as a service (PaaS) and software as a service (SaaS) are contemporary software application
development and delivery models that an increasing number of organizations are using to improve
their time to market, reduce capital expenditures, and improve overall competitiveness in a
challenging global economy. Internet-based, shared computing platforms are attractive because
they let businesses quickly access hosted, managed software assets on demand and altogether avoid
the costs and complexity associated with the purchase, installation, configuration, and ongoing
maintenance of an on-premises data center and dedicated hardware, software, and accompanying
administrative staff.
The most successful on-demand SaaS/PaaS company at the forefront of these paradigm shifts
is salesforce.com, which recently received the distinction of being the first on-demand software
vendor to be added to the S&P 500 Index. Stepping out from underneath the enormously successful
salesforce.com CRM SaaS application, Force.com is a generalized Internet application development
and delivery platform on which individual enterprises and service providers have built all types of
custom business applications, including supply chain management, billing, accounting, compliance
tracking, human resource management, and claims processing applications. The platform’s metadata-
driven architecture enables anyone to efficiently build and deliver sophisticated, customizable,
mission-critical, Internet-scale multitenant applications. Using standards-based Web service APIs
and native platform development tools, Force.com developers can easily build all components of
a Web-based application, including the application’s data model (tables, relationships, etc.), user
interface (data entry forms, reports, etc.), business logic (workflows, validations, etc.), integrations
with other applications, and more.
Over the past 10 years, salesforce.com engineers have optimized all layers of the Force.com platform
for multitenancy, with features that let the platform deliver unprecedented Internet scalability to the
height of 170 million transactions daily. Platform features such as the bulk data processing API, the
Apex programming language, an external full-text search engine, and its unique query optimizer
help make multitenant platform applications highly efficient and scalable with little or no thought
from developers.
Salesforce.com’s managed approach for the deployment of production applications ensures
top-notch performance, scalability, and reliability for all dependent applications. Additionally,
salesforce.com continually monitors and gathers operational information from Force.com
applications to help drive incremental improvements and new platform features that immediately
benefit existing and new applications.

